1. METRIC TERMS

a.	1,000,000,000	Billion - GIGA - G
b.	1,000,000	Million - MEGA - M
C.	1.000	Thousand - Kilo - K
		Thousandth - MILLI - m
	1,000	
e.	1	Millionth - MICRO - μ
	1,000,000	
f.	1	Billionth - NANO - n
	1,000,000,000	
q.	1	Trillionth - PICO - p
Ŭ	1,000,000,000,000	'

2. METRIC CONVERSION SCALE

GIGA 9 —	MEGA 6 L	KILO 3 L	BASE UNITS L	M LL -3 	MICRO -6 I	NANO -9 L	PICO -12
To convert to base units move decimal			•		onvert to bas move decin		

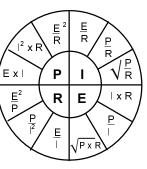
3. Resistor Color Code

Donal color and digit a

В	Band color and digit represented:					
0	Black	4	Yellow	8 Grey	20%	no color
1	Brown	5	Green	9 White		
2	Red	6	Blue	5% Gold		
3	Orange	7	Violet	10% Silver		

4. DC Circuits

a OHM's law


E = |R|

1 = <u>E</u>

R = E

b. Resistors in series

$$R_T = R_1 + R_2 + R_3 + \dots$$

 $I_T = I_1 = I_2 = I_3 = \dots$
 $E_T = E_1 + E_2 + E_3 + \dots$

c. Resistors in parallel

$$R_T = \frac{R_1 \times R_2}{R_1 + R_2}$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$
 ... Different value resistors

$$R_T = R$$
 Same value resistors

5. SYMBOLS

LETTER SYMBOL	MEANING	UNIT OF MEASURE
E, V	Voltage	Volt
	Current	Ampere
R	Resistance	Ohm
С	Capacitor	Farad
L	Inductor	Henry
Xc	Capacitive Reactance	Ohm
X_L	Inductive Reactance	Ohm
Z	Impedance	Ohm

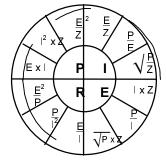
6. AC Circuits

a Conversion of values

$$E_{RMS} = 0.707 E_{PK}$$

$$E_{PK} = 1.414 E_{RMS}$$

b. Series RLC Circuit


$$|_{T} = |_{R} = |_{L} = |_{C}$$

$$E_{T} = \sqrt{E_{R}^{2} + (E_{L} - E_{C})^{2}}$$

$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}$$

Parallel RLC Circuit

$$E_{T} = E_{R} = E_{L} = E_{C}$$
 $I_{T} = \sqrt{I_{R}^{2} + (I_{L} - I_{C})^{2}}$
 $Z = \underline{E}_{T}$

7. Capacitor

a.
$$X_C = 1$$
 $2\pi fC$

- Capacitors in series add like resistors in parallel.
- c. Capacitors in parallel add like resistors in series.

8. Inductor

- a $X_1 = 2\pi fL$
- Inductors in series add like resistors in series.
- c. Inductors in parallel add like resistors in parallel.

9. Time Constants

- a. TC = RC Time it takes a capacitor to charge to 63.2% of applied voltage.
- b. TC = L Time it takes an inductor to charge to R 63.2% of available current.

T = Time constant in seconds R = Resistance in ohms

C = Capacitance in farads

L = Inductance in henries

5T = Discharge or FULL charge

10. Transformer relationships

a. Voltage turns ratio

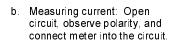
$$\frac{N_P}{N_S} = \frac{E_P}{E_S}$$

b. Current turns ratio

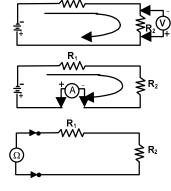
$$\frac{N_P}{N_S} = \frac{I_S}{I_P}$$

c. Impedance turns ratio

$$\frac{N_P}{N_S} = \sqrt{\frac{Z_P}{Z_S}}$$


d Efficiency (%)

11. SUMMARY OF CHARACTERISTICS OF SERIES AND PARALLEL RESONANT CIRCUITS


	Series Resonant Circuit	Parallel Resonant Circuit
Reactance (X)	$X_L = X_C$	$X_L = X_C$
Impedance(Z)	Minim um	Maximum
Current (I _T)	Maximum	Minimum
Circuit at Resonance	Resistive	Resistive
Circuit below Resonance	Capacitive	Inductive
Circuit above Resonance	Inductive	Capacitive
Frequency (fr)	$\frac{1}{2\pi\sqrt{LC}}$	$\frac{1}{2\pi \sqrt{LC}}$
Quality (Q) of Circuit	<u>X</u>	X _L R
Bandwidth (BW)	fr Q	fr Q

12. USING METERS

 Measuring voltage: Observe polarity and connect meter across component or source.

Measuring resistance:
 Disconnect power source,
 connect meter across circuit
 or component- no polarity.

13. ANTENNA LENGTH

Formulas assume velocity of propagation equal 95% of the velocity of light

L (ft) =
$$\frac{468}{\text{fMHz}}$$
 (for half-wave antenna)

L (ft) =
$$\frac{234}{\text{fMHz}}$$
 (for quarter-wave antenna)

GTA 11-02-006

DC/AC FORMULA DATA

MOSs: ALL ELECTRONIC MAINTENANCE

DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited.

DISTRIBUTION: US Army Training and Audiovisual Support Centers (TASC)

Supercedes GTA 11-2-5

HEADQUARTERS, DEPARTMENT OF THE ARMY

JULY 1990